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Abstract

The advent of high-throughput sequencing technologies has not only revolutionized the field of bioinformatics but has also 
heightened the demand for efficient taxonomic classification. Despite technological advancements, efficiently processing 
and analyzing the deluge of sequencing data for precise taxonomic classification remains a formidable challenge. Existing 
classification approaches primarily fall into two categories, database-based methods and machine learning methods, each 
presenting its own set of challenges and advantages. On this basis, the aim of our study was to conduct a comparative ana-
lysis between these two methods while also investigating the merits of integrating multiple database-based methods. 
Through an in-depth comparative study, we evaluated the performance of both methodological categories in taxonomic clas-
sification by utilizing simulated data sets. Our analysis revealed that database-based methods excel in classification accuracy 
when backed by a rich and comprehensive reference database. Conversely, while machine learning methods show superior 
performance in scenarios where reference sequences are sparse or lacking, they generally show inferior performance com-
pared with database methods under most conditions. Moreover, our study confirms that integrating multiple database-based 
methods does, in fact, enhance classification accuracy. These findings shed new light on the taxonomic classification of high- 
throughput sequencing data and bear substantial implications for the future development of computational biology. For 
those interested in further exploring our methods, the source code of this study is publicly available on https://github. 
com/LoadStar822/Genome-Classifier-Performance-Evaluator. Additionally, a dedicated webpage showcasing our collected 
database, data sets, and various classification software can be found at http://lab.malab.cn/~tqz/project/taxonomic/.
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Significance
In the burgeoning field of bioinformatics, efficiently classifying species from vast amounts of sequencing data remains a 
central challenge. Our research conducted an exhaustive comparison between database-based and machine learning 
methods for this task, unveiling their individual strengths and weaknesses. By integrating these approaches, we provide 
a novel strategy that enhances taxonomic classification, promising significant advances in biodiversity research and 
other related biological disciplines.
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Introduction
As high-throughput sequencing technology continues to 
evolve, taxonomic classification has emerged as a corner-
stone in the field of bioinformatics (Hassemer et al. 2019). 
Accurate taxonomic classification is not merely an academic 
concern; it is crucial for uncovering biological diversity, con-
ducting disease-associated metagenome studies, and 
undertaking environmental surveillance (Uyaguari-Diaz 
et al. 2016; Kim et al. 2017; Nooij et al. 2018). Yet, efficient-
ly processing and analyzing the sheer volume of sequencing 
data for precise taxonomic classification remains a daunting 
task (Gardiner et al. 2021).

In the landscape of existing taxonomic classification 
techniques, the dominant paradigms are database-based 
(DB) and machine learning (ML) methods. DB approaches 
primarily focus on aligning sequencing reads against a 
known reference genome database to determine taxonom-
ic classification (Bonin et al. 2023). These methods require 
substantial hard drive space to store the database and a sig-
nificant amount of memory to load the database for use 
(Wright et al. 2023). In contrast, ML techniques endeavor 
to classify species by discerning patterns within the training 
data set and thereby making predictions (Liang et al. 2020). 
Typically, these methods only need a much smaller model, 
making them more efficient in terms of storage and mem-
ory usage.

Each of these methodologies comes with its own set of 
merits and drawbacks. While DB methods can achieve 
higher classification precision when the reference database 
is extensive and complete, they are constrained by the qual-
ity and scope of the reference database itself (Parks et al. 
2020). ML approaches, on the other hand, offer advan-
tages when reference sequences are sparse or lacking, as 
they can extrapolate the existence of unknown species 
from the training data; however, their performance is often 
limited by the representativeness and volume of the train-
ing data (Mock et al. 2022).

In light of these complexities, our study sets out to not 
only compare DB methods with ML approaches but also 
to investigate the feasibility of integrating multiple DB tech-
niques. This multifaceted research aims to rigorously assess 
the performance and suitability of these methods using si-
mulated data sets. Ultimately, our objective is to explore 
avenues for optimizing and amalgamating these techni-
ques, with the goal of elevating the accuracy and efficiency 
of future taxonomic classification efforts.

DB Taxonomic Classification Method

DB taxonomic classification methods hold a pivotal position 
in bioinformatics and constitute a major trend in contem-
porary classification strategies (Ames et al. 2013). 
Utilizing reference databases, these methods determine 
the taxonomic affiliations of unknown sequences; their 

accuracy and efficiency are strongly influenced by both 
the comparison strategies employed and the quality of 
the databases themselves (Portik et al. 2022). With the 
surge in high-throughput sequencing data, the task of pro-
cessing and analyzing large data sets for accurate classifica-
tion has become increasingly challenging (Johnson et al. 
2019; Yang et al. 2020). To tackle this, DB methods deploy 
sophisticated algorithms and computations, serving as a 
potent solution. These methods are broadly categorized 
into three primary types: methods based on Alignment, 
methods based on Markers, and methods based on 
k-mer. Each category exhibits its own unique features, pos-
sesses applicability across diverse scenarios, and thus man-
ifests the adaptability and richness of the field.

Alignment-Based Methods

Alignment-based taxonomic classification methods are 
pivotal in bioinformatics, facilitating species identification 
by aligning unknown sequences against known sequences 
in reference databases. These methods are applied 
extensively across various domains, including evolutionary 
biology and metagenomics. With technological advance-
ments, sophisticated sequence alignment techniques have 
been developed to enhance efficiency and accuracy 
(Gao et al. 2017; Furstenau et al. 2022). These advanced 
methodologies offer more precise measurements of se-
quence similarity, thereby improving classification accur-
acy. However, the computational complexity of these 
methods remains relatively high, particularly for large-scale 
data sets, necessitating significant computational re-
sources. Alignment-based methods have wide applications 
in bioinformatics, and ongoing technological improve-
ments are expected to further enhance their efficiency 
and applicability for research purposes (Eisenhofer and 
Weyrich 2019; Zhang et al. 2024).

Marker-Based Methods

In microbiomics and bioinformatics, marker-based classifi-
cation methodologies leverage highly conserved marker 
genes or proteins within specific species or groups for spe-
cies identification (Tovo et al. 2020; Hugenholtz et al. 
2021). These approaches achieve precise species determin-
ation by comparing marker gene sequences from unknown 
samples with known sequences in reference databases, ex-
emplified by the widespread use of the 16S rRNA gene in 
bacterial classification (Lan et al. 2016; Vicente Dos 
Santos and Tixier 2017). While these marker-based classifi-
cation methods have gained recognition in the scientific 
community, the increasing volume and diversity of sequen-
cing data necessitate further research and innovation to ad-
dress challenges in identifying unknown or rare microbes 
and managing the surge in data storage and retrieval de-
mands (Blanco-Míguez et al. 2023).
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k-mer-Based Method

In bioinformatics, the taxonomic classification method 
based on k-mer is a vital classification technique, which 
complements the methods based on Alignment and 
Marker. In this approach, k-mer refers to a DNA sequence 
fragment with a length of k. Such fragments serve as 
feature units in species’ genomic data. By analyzing the 
occurrence frequency of k-mer in diverse species’ genomes, 
taxonomic classification is achieved (Shaw and Yu 2022). 
The merits of this method are its efficiency, universality, 
and expandability. As the count of k-mers is finite, struc-
tures like hash tables can be utilized for storing and 
searching k-mers, enabling swift taxonomic classification 
(Breitwieser et al. 2018). Additionally, the k-mer approach 
is not dependent on particular genes or genomic structures, 
allowing its application to any species’ genomic data. 
Kraken is a notable application example of the k-mer-based 
classification method (Wood and Salzberg 2014). At the 
core of Kraken is a database containing k-mers and their 
lowest common ancestor (LCA). It quickly assigns a classifi-
cation to each k-mer by matching it with the most specific 
node in the taxonomic tree associated with the given 
k-mer. This efficient approach is also utilized by some other 
traditional k-mer-based classification software, which simi-
larly employs the LCA for taxonomy resolution (Menzel 
et al. 2016; Piro et al. 2020).

Nonetheless, the k-mer method has its restrictions. 
Initially, this technique presumes that every genome region 
equally contributes to taxonomic classification. Yet, diverse 
gene regions might have varied contributions (Han and Cho 
2019). Next, the k-mer approach is exceptionally sensitive 
to sequence inaccuracies; slight errors can result in numer-
ous k-mer mistakes (Vinje et al. 2015). Ultimately, the k-mer 
method can not address intricate biological events like gene 
recombination or horizontal gene transfers (Dubinkina 
et al. 2016).

Overall, the k-mer-based taxonomic classification tech-
nique is potent and adaptable. In combination with the 
Alignment- and Marker-based methods, it offers a holistic 
and precise taxonomic classification solution. Yet, this 
method presents its challenges and limitations. It demands 
additional research and enhancements to cater to varying 
application contexts and requirements. For a comprehen-
sive understanding of this procedure and potential opti-
mization tactics, we present a flowchart (Fig. 1) 
illustrating the conventional k-mer classification process 
from database establishment to DNA sequence input and 
results, along with unique optimization techniques used 
by certain software.

To address the limitations of the k-mer taxonomic classi-
fication method, a variety of improvement strategies have 
been proposed by researchers. These are aimed at enhan-
cing both its accuracy and efficiency. Significantly, these 

improvement strategies are tailored not just for the unique 
features of the k-mer method itself but also consider the 
synergistic effects when used in conjunction with methods 
based on Alignment and Marker genes. Below, we outline 
some primary directions for improvement.

Opting for Specific Data Structures Serves as One 
Effective Strategy. For example, Kraken2 has managed 
to increase its query speed while simultaneously reducing 
memory consumption by adopting compact hash tables 
and utilizing storage structures like minimizers (Lu and 
Salzberg 2020). Similarly, KrakenUniq employs the 
HyperLogLog data structure to estimate the unique number 
of k-mers in each classification unit, yielding significant ben-
efits in memory efficiency, calculation speed, and accuracy 
(Breitwieser et al. 2018). Centrifuge leverages the FM index 
data structure, based on the Burrows–Wheeler transform 
(BWT), enabling quick searches for k-mers of any length 
and thus facilitating efficient sequence categorization 
(Kim et al. 2016). In the case of MegaBLAST, its core feature 
lies in the strategic organization of database indices, 
coupled with the deployment of the “seed search strategy.” 
This allows for the identification of initial matching sub-
strings within both queries and databases (Morgulis et al. 
2008). This arrangement encompasses compressed se-
quence information and positional data for k-mers, while 
also integrating unique offset and prefix management strat-
egies. Such a setup enables MegaBLAST to efficiently pro-
cess k-mers, ensuring that the identified seeds adhere to 
the seed qualification criteria. This innovative data structure 
furnishes MetaOthello with notable advantages in terms of 
both memory and computation, facilitating quick and ac-
curate metagenome read classifications (Liu et al. 2018).

Optimize k-mer Selection. For instance, CLARK’s hall-
mark feature is its employment of target-specific or distin-
guishing k-mers for categorization (Ounit et al. 2015). By 
constructing the target sequence’s k-spectrum and elimin-
ating shared k-mers, CLARK opts for k-mers that uniquely 
and unambiguously represent each target for classification. 
This focused use of selective k-mers significantly enhances 
the precision and speed of classification. Similarly, 
taxMaps’ core strategy aims to optimize k-mer selection 
and management through a unique compression algo-
rithm, thereby achieving efficient species categorization 
(Corvelo et al. 2018). This compression strategy not only 
eradicates database redundancy but also streamlines the 
categorization process by carrying out LCA pre-allocation 
and k-mer collapsing, thereby facilitating approximate 
searches and improving query efficiency. Kaiju introduces 
a complementary method to this k-mer optimization by fo-
cusing on protein-level sequence comparison for classifica-
tion (Menzel et al. 2016). Utilizing the BWT for rapid 
and precise string matching, Kaiju surpasses traditional 
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k-mer-based approaches by identifying maximum exact 
matches (MEMs) at the protein level, thereby enhancing re-
call especially for underrepresented genera in the database. 
This capability allows Kaiju to classify more reads with higher 
accuracy. Additionally, Kaiju’s greedy heuristic search mode, 
which permits a certain number of amino acid substitutions 
at the match termini, further boosts recall, making it a robust 
tool for sequence classification at the protein level.

Incorporating Intricate Algorithms. For example, Kraken 
achieves high precision and rapid classification rates by syn-
ergistically merging the k-mer approach with the LCA 

strategy (Wood and Salzberg 2014). k-SLAM employs 
k-mers for initial alignment but goes a step further by add-
itionally integrating Smith–Waterman pairwise alignment 
and pseudo-assembly techniques to further boost accuracy 
(Ainsworth et al. 2017). These additional computational 
layers make k-SLAM’s algorithm more intricate compared 
with conventional k-mer-based methods. MMseqs2, on 
the other hand, takes a more comprehensive approach. It 
does not solely rely on k-mers for matching; instead, it em-
ploys a complex strategy that involves first identifying tar-
get sequences with two sequential analogous k-mer 
matches on a single diagonal and then leveraging the 

FIG. 1.—Flowchart of taxonomic classification based on k-mer and software enhancement strategies. The arrows with smaller heads illustrate the conven-
tional k-mer classification pathway, encompassing the formulation of databases and the incorporation of DNA sequences leading to the classification outcome. 
The wider arrows highlight the unique optimization techniques implemented by specific software, along with the software names. a) The preprocessing of the 
genetic sequences to be classified, including Quality Check and Sequence Trimming. b) The construction of reference databases by species classification soft-
ware, detailing unique optimization methods employed by three different software tools during database construction. c) The querying of input sequences 
within the reference databases, listing the querying methods of three software tools. d) The output of classification results, which are hierarchical classifications 
ranging from domain to species.
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BWT for exact string alignments (Steinegger and Söding 
2017). These multi-step tactics make MMseqs2’s approach 
both more intricate and more efficient compared with trad-
itional k-mer-centric methods. Additionally, MMseqs2 facil-
itates iterative profile-to-sequence and sequence-to-profile 
queries, adding yet another layer to its algorithmic com-
plexity. PathSeq further contributes to this field by employ-
ing a unique classification method that begins with the 
removal of low-quality, low-complexity host-derived reads 
(Walker et al. 2018). It utilizes a Bloom filter for rapid 
k-mer searches to detect short sequences in the host refer-
ence sequences, effectively eliminating a significant portion 
of host reads before sequence alignment. The remaining 
nonhost reads are then mapped to a microbial genome ref-
erence library using the BWA–MEM aligner, with paired 
reads required to map to the same microorganism to en-
hance specificity. These steps, including parallel data pro-
cessing, improved low-complexity sequence filtering 
algorithms, and efficient alignment tools, greatly accelerate 
analysis speed and efficiency, setting PathSeq apart from 
traditional methods.

Unique k-mer Approach. For example, CLARK-S and 
DIAMOND, both leveraging spaced seeds, exemplify this in-
novation. CLARK-S employs a method called spaced 
k-mers, which allows for mismatches at predefined posi-
tions, thereby enhancing the tool’s recall without com-
promising specificity (Ounit and Lonardi 2016). This 
approach facilitates more flexible and accurate sequence 
matching, especially useful in complex metagenomic data 
sets. Similarly, DIAMOND introduces a dual indexing and 
spaced seed strategy for protein sequence alignment, sig-
nificantly improving upon traditional continuous seed 
methods. By identifying all seeds and their positions in 
both query and reference sequences and then linearly tra-
versing the lists to find all matching seeds, DIAMOND en-
hances data locality and reduces memory bandwidth 
requirements. Its use of longer seeds, with only a subset 
of positions being utilized, strikes a balance between speed 
and recall, enabling faster alignments without sacrificing 
accuracy (Buchfink et al. 2015).

These improved strategies showcase the diversity and 
flexibility of k-mer taxonomic classification methods. By 
strategically combining diverse technologies and strategies, 
the precision and performance of k-mer methods can be 
advanced to new heights. Nevertheless, these enhance-
ments come with new challenges and concerns that de-
mand continued investigation and rigorous probing.

In the face of intricate and varied genomic data, k-mer 
taxonomic classification techniques have evolved into an 
essential instrument for researchers. Their high efficiency 
and generality have led to their extensive application in di-
verse settings and fields, ranging from environmental gen-
omics to metagenomics, epidemiology, and origin tracking, 

to name a few (Van Etten et al. 2023). More importantly, 
k-mer methods do not rely on specific genes or genomic 
structures, which is particularly beneficial for genomes 
without detailed annotations or those that are highly 
heterogeneous.

ML-Based Taxonomic Classification Methods

In some cases, traditional classification methods can be in-
efficient and may struggle to recognize new species, par-
ticularly when tasked with processing massive amounts of 
data (Borba et al. 2021). Transitioning from this challenge, 
ML has recently emerged as a potent computational tool 
across various scientific and engineering domains, notably 
including taxonomic classification. ML introduces a novel 
method for identifying and categorizing unknown biologic-
al entities, particularly in the fields of viral genomics and mi-
crobiomics (Bartlett et al. 2022). Employing a range of 
sophisticated algorithms and statistical methodologies, 
ML can adeptly distill features from intricate biological 
data, thereby leading to precise categorizations (Garcia 
et al. 2021).

In the realm of taxonomic classification, both traditional 
ML and deep learning techniques have showcased promise. 
Specifically, algorithms such as VirusTaxo, VirFinder, and 
IDTAXA in the traditional ML category are complemented 
by others like DeepVirFinder, CHEER, and DeepMicrobes 
in the deep learning domain (Ren et al. 2017, 2020; 
Murali et al. 2018; Liang et al. 2020; Shang and Sun 
2021; Raju et al. 2022). Each of these methods brings their 
own strengths and constraints concerning classification 
precision and recall, but together they collectively furnish 
a robust instrument for probing into biological diversity 
and virus taxonomy.

Traditional ML-Based Methods

In the domain of taxonomic classification, traditional ML 
methodologies play a pivotal role, surpassing deep learning 
techniques in terms of interpretability and computational 
efficiency, while often matching their performance levels 
(Alam and Chowdhury 2020). These methods encompass 
a variety of algorithms, including Naive Bayes, logistic re-
gression, tree-based techniques, and sequence analysis, 
each offering distinct advantages in addressing taxonomic 
challenges (Song and Wang 2023).

Specifically, QIIME 2 is renowned for its q2-feature- 
classifier plugin, which leverages a suite of ML classifiers 
from scikit-learn to redefine taxonomic classification of 
marker gene sequences into a structured document classi-
fication framework (Bokulich et al. 2018; Bolyen et al. 
2019). This plugin’s adaptability allows for sophisticated 
customization, enabling the integration of diverse feature 
extraction and transformation methods, alongside the se-
lection of an optimal ML algorithm. At the heart of this 
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plugin is a method that utilizes k-mer counts from reference 
sequences to train a multinomial Naive Bayes classifier, a 
technique that notably enhances its capabilities by employ-
ing the HashingVectorizer for feature extraction. This ad-
vancement extends the k-mer length analysis from the 
traditional 8-mers used by the RDP Classifier to up to 
32-mers, significantly surpassing the conventional classi-
fier’s limitations (Wang et al. 2007). Additionally, this meth-
od fine-tunes class weights, allowing the classifier to move 
beyond uniform class prior assumptions and more accur-
ately reflect the natural distribution of taxa in samples, 
thereby underscoring the balance between interpretability 
and computational efficiency that traditional ML methods, 
particularly Naive Bayes, bring to the field of taxonomic 
classification (Song and Wang 2023).

IDTAXA combines decision tree methods with bootstrap 
sampling to form an effective tree-based classification sys-
tem. It builds decision trees to segment data into binary de-
cisions, capturing complex relationships (Murali et al. 
2018). Nodes in the tree represent data set features, chosen 
for their class separation ability, which helps in segmenting 
the feature space. Bootstrap sampling generates multiple 
subsets of the original data to create an ensemble of trees, 
improving accuracy and generalizability. The model is 
trained by selecting features and splits iteratively and tested 
on separate data sets, including simulated ones, to evaluate 
performance. This approach allows IDTAXA to accurately 
classify complex biological data by leveraging the ensemble 
of trees. However, tree-based methods may confront chal-
lenges such as lengthy training times and recall to param-
eter selection.

Deep Learning–Based Methods

As the demands for complex, detailed, and accurate classi-
fication tasks continue to grow within the biological 
sciences, deep learning, with its convolutional neural net-
works (CNN), long short-term memory networks (LSTM), 
and other architectures, has emerged as a crucial compo-
nent of the solution repertoire (Yang et al. 2022). These 
methods are adept at automatically extracting features 
from raw data and capturing complex nonlinearities, sig-
nificantly enhancing classification accuracy and generaliz-
ability compared with traditional ML approaches. Deep 
learning’s application spans genome and protein sequence 
analysis, as well as specific tasks such as RNA virus classifi-
cation; despite its computationally intensive training pro-
cess and the need for meticulous hyperparameter tuning, 
its strengths in automatic feature learning and complex 
model construction establish it as a cornerstone in 
advanced bioinformatics tools.

BERTax is a novel method for DNA sequence classifica-
tion that relies on deep learning and employs the BERT 
architecture commonly used in natural language 

processing (Mock et al. 2022). What sets this method apart 
is its ability to operate independently of similar sequences in 
databases, which makes it outstanding for the classification 
of new species. By segmenting DNA sequences into k-mers 
as inputs, BERTax trains on these segments to classify se-
quences across diverse taxonomic levels, ranging from 
kingdoms to genera. Nonetheless, BERTax may show re-
duced predictive power at lower taxonomic levels, such as 
at the genus level.

Results

Comparison of Classifier Performance

In the current research, we have thoroughly compared the 
performance of different types of classifiers, aiming to 
highlight performance disparities between DB classifica-
tion algorithms and ML classifiers across diverse biological 
taxonomic levels. Our particular attention was given to the 
database approaches at the species and genus levels be-
cause these taxonomic categories often present chal-
lenges and practical relevance in microbial identification 
(McIntyre et al. 2017; Sczyrba et al. 2017) (refer to 
Fig. 2). In contrasting ML approaches, we particularly 
examined their efficacy at the genus, phylum, and super-
kingdom taxonomic levels (refer to Fig. 3). The selection 
was made for two primary reasons: Firstly, ML-based 
classifiers are still evolving, and their effectiveness in fine- 
grained classification in microbiology, like at the species 
level, is yet to be improved (Liang et al. 2020; Mock 
et al. 2022); secondly, given the capability of ML methods 
in dealing with large and high-dimensional data sets, we 
anticipate they may excel at higher taxonomic levels like 
phylum and superkingdom. Such a multitiered compari-
son will assist us in fully grasping the strengths and weak-
nesses of the different approaches.

At the species level (refer to Fig. 2a), methods based on 
databases demonstrate notable disparities in their perform-
ance (Sczyrba et al. 2017). Numerous software suites mis-
classify organisms into incorrect subspecies, severely 
compromising their accuracy and leading to subpar overall 
performance. Yet, at the genus level (refer to Fig. 2b), con-
tinuously updated methods based on databases have gar-
nered exceptionally good results.

Despite this, at the superkingdom level where they are 
purportedly strong (see Fig. 3c), ML classification methods 
still fall short of competing with DB approaches. However, 
in scenarios where species are absent from databases and 
not included in the training set, ML classification methods 
show a significant advantage in accuracy. A box plot (see 
Fig. 4) now visually compares the classification precision, re-
call, accuracy, and false positive rate (FPR) of ML and DB 
methods under these circumstances. Although DB methods 
demonstrate exceptionally high recall, ML approaches, such 
as BERTax, generally outperform in precision, accuracy, and 
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FPR. Notably, BERTax ranks first in overall performance me-
trics. This highlights the significant potential of ML methods 
in classifying species not represented in databases, showing 
their capability to effectively handle cases where species are 
unknown or new to the system. In addition, we conducted 
experiments with seven different sensitivity settings of 

DIAMOND, which demonstrated that adjusting sensitivity 
has a minimal impact on the results (see Supplementary 
Material online).

The Merge method, which consolidates the results from 
eight database-reliant software tools, stands out for achiev-
ing the highest accuracy levels at both species and genus 

a

b

FIG. 2.—Performance evaluation of DB classification methods. This boxplot illustrates the accuracy, precision, recall, and FPR values for various DB clas-
sification approaches on a specific data set. The “Merge” method is referred to as the result integration strategy discussed in this paper, and “Merge(P)” 
represents our high-precision integration strategy. Accuracy represents the proportion of samples correctly identified by the classifier, precision measures 
the classifier’s ability to correctly label a sample as a specific category, recall is the proportion of all relevant category samples that are identified by the classifier, 
and the FPR indicates the frequency at which nontarget samples are incorrectly labeled as target categories. The methods are sorted by the median accuracy to 
facilitate comparison. a) Represents species level and b) represents genus level.
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levels in the comprehensive test data set, as shown in Fig. 2. 
This indicates the method’s effectiveness in integrating di-
verse software outputs to enhance classification precision 
for species well-represented within databases. However, 
its precision significantly diminishes when applied to se-
quences from species not included in the databases, as illu-
strated in Fig. 4, where it falls below the median precision 
among the evaluated tools. This downturn in effectiveness 
can be primarily attributed to the fact that the majority of 
the individual software tools in the Merge ensemble also 
misclassify these unknown sequences. Since Merge meth-
odologically selects the consensus or majority classification 

from its constituent tools, its precision is inherently limited 
by the accuracy of these individual tools. Consequently, 
when these tools collectively misclassify an unknown se-
quence, the Merge method is predisposed to adopt these 
incorrect classifications, leading to reduced precision. This 
outcome highlights a fundamental limitation of the Merge 
approach: its dependency on the accuracy of individual DB 
tools, which, in the absence of database representation for 
certain species, often leads to the propagation of classifica-
tion errors. This scenario underscores the challenge of rely-
ing on consensus-based methods for classifying species 
absent from reference databases, revealing a critical area 

a b c

FIG. 3.—Performance comparison of classification methods based on ML. This figure presents three boxplots, each representing the performance metrics 
—accuracy, precision, recall, and FPR—across different taxonomic levels: genus, phylum, and superkingdom. a) Represents genus level, b) represents phylum 
level, and c) represents superkingdom level.

FIG. 4.—A boxplot comparing the performance of ML and DB methods at the genus level on data not included in training databases, showcasing pre-
cision, recall, accuracy, and FPR. The boxplots are sorted by the average accuracy. Details can be found in the legend.
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for improvement in the design and application of integrated 
classification strategies.

Regarding actual runtime and memory usage, a more 
nuanced understanding can be gained by examining Figs. 
5a and 5b and 6. In Fig. 5a, it is evident that ML classification 
methods often take longer in most cases. Figure 5b further 

corroborates that these ML methods tend to consume no-
ticeably less memory compared with DB methods. This di-
chotomy can be attributed to the inherent characteristics 
of ML algorithms, which often invest more time in model 
training, thus efficiently conserving computational re-
sources and lowering memory usage during runtime. 

a

b

FIG. 5.—Running resource consumption of classification software. a) Represents the total running time for each software and b) represents the total 
memory usage for each software.
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Consequently, in scenarios where computational resources 
are constrained but time is not a limiting factor, ML methods 
could offer significant advantages.

It is noteworthy that while Qiime2 appears to operate 
with relatively shorter runtimes as depicted in Fig. 5a, the 
actual time consumed for data processing is significantly 
longer and is not reflected in the runtime calculations. On 
the flip side, classification methods based on databases 
generally show shorter runtimes (Fig. 5a) but consume sig-
nificantly more memory (Fig. 5b). The primary reason for 
this is the necessity to load substantial reference databases 
into memory to facilitate quick searches, thereby signifi-
cantly increasing memory consumption. In settings where 
time is of the essence but resources are abundant, these 
DB methods may be more advantageous.

However, DB classification methods also offer options to 
reduce memory consumption. For instance, Kraken2 allows 

for a reduction in memory usage by downsizing the data-
base, with official low-memory versions of the database 
available, albeit at the expense of a reduced number of 
identifiable species. KrakenUniq introduces a technique of 
loading only a small portion of the database into memory 
at a time for processing, thus diminishing memory require-
ments. CLARK has developed a lightweight variant, 
CLARK-l, which reduces memory demands to 4% of the 
original CLARK requirements by compromising on execu-
tion speed and recall. DIAMOND permits the adjustment 
of block size and the number of seed index chunks pro-
cessed, enabling a balance between memory usage and 
performance. MMseqs2 reduces memory demands by seg-
menting the database.

Despite these solutions offering relief in memory- 
constrained environments, it is imperative to acknowledge 
that reducing memory consumption invariably impacts 

FIG. 6.—Comprehensive performance comparison of various microbiome classifiers at the genus level. The x-axis and y-axis represent the log-transformed 
total running time in minutes and total memory usage in gigabytes (Gb), respectively. The size of each bubble indicates the precision of the classifier, while the 
recall rate is represented by the corresponding values on the scale bar on the right.
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other performance metrics, such as classification speed, ac-
curacy, and the breadth of identifiable species. The selec-
tion of the appropriate tool and configuration depends 
not only on memory limitations but also on the specific re-
quirements and objectives of data processing. Therefore, 
users must navigate a trade-off among memory usage, exe-
cution time, and classification capabilities, opting for the 
method that best suits their particular scenario.

For a more holistic understanding, Fig. 6 provides an in-
tegrated view by plotting the log-transformed runtime 
against the log-transformed memory usage for each classi-
fier. The size and color of each bubble in Fig. 6 additionally 
represent the precision and recall metrics, respectively, pro-
viding a multifaceted evaluation of classifier performance at 
the genus level. This comprehensive view aids in better un-
derstanding the trade-offs involved and could be instru-
mental in the informed selection of an appropriate 
method based on the specific needs of a given study.

Evaluation of Performance in Results Integration

The strategy of direct integration of classification outcomes, 
employed in this study, led to a substantial enhancement in 
the performance of taxonomic classification. By leveraging 
the strengths of each classification method, we achieved the 
best results across nearly all evaluation criteria. However, our 
focus on precision, particularly evident in the Merge(P) strat-
egy, led to exceptionally high precision while slightly reducing 
recall and accuracy. Notably, the performance of Merge(P) at 
the species level is very close to that of CLARK, yet it underper-
forms compared with the Merge strategy at the species level 
and performs similarly at the genus level.

By using the integration strategy, we not only achieved 
more comprehensive and precise species identification but 
also succeeded in significantly minimizing the classification 
errors that could occur using a single method. Within this 
strategy, Merge focuses on achieving a balance between 
precision and recall, resulting in robust overall classification 
results. In contrast, Merge(P) specifically aims to maximize 
precision, which leads to exceptionally high precision rates 
but slightly lowers recall and accuracy. This contrast be-
tween the two strategies illustrates the trade-offs involved 
in optimizing different aspects of taxonomic classification. 
Despite these trade-offs, neither strategy significantly de-
tracts from the overall performance of the integrated out-
comes, demonstrating the efficacy of employing tailored 
approaches depending on specific classification goals.

It is worth noting that this strategy of direct result inte-
gration aims not to optimize or modify individual classifica-
tion methods but rather relies on the original outcomes of 
each respective method; this ensures that the integration 
strategy maintains the unique strengths of each method 
while simultaneously circumventing any uncertainties that 
could be introduced through optimization or adjustments.

Furthermore, under this integration strategy, the classifi-
cation results for some species exhibited such marked im-
provements that it became evident this could be 
attributed to the synergistic impact of multiple methods. 
This synergy allows for the accurate categorization of spe-
cies that are hard to classify using a single approach.

In summary, this strategy of direct result integration con-
sistently surpassed the performance of any individual meth-
od on most evaluation criteria, thereby offering a robust 
and effective strategy for taxonomic classification in 
high-throughput sequencing data. This clearly affirms the 
tremendous potential of employing multiple strategies in 
parallel and integrating results.

Discussion
In this research, we have conducted a comprehensive ana-
lysis comparing database-driven classification approaches 
and ML classification approaches. A strategy for integrating 
various methods to enhance the accuracy of taxonomic 
classification was also introduced. Through this compara-
tive lens, experimental outcomes reveal that both types of 
methods have specific advantages and limitations that 
manifest across different levels of biological taxonomy.

Classification methods relying on databases exhibit not-
able disparities in performance, particularly at the species 
and genus levels. This may stem from the incorrect categor-
ization of organisms into the wrong subspecies, conse-
quently lowering the overall accuracy of classification 
(Martínez-Porchas et al. 2016). However, at the genus level, 
continuously updated software employing DB methods 
have yielded exceptionally favorable results. These findings 
not only validate the efficacy of database-driven methods 
but also spotlight the challenges they could encounter in 
species-level classification (Nørskov-Lauritsen 2014).

On the other hand, ML methods show their strengths in 
specific scenarios, such as when databases are incomplete or 
when classifying species not included in the training set. 
Despite these advantages, they generally lag behind in terms 
of actual classification accuracy when benchmarked against 
DB methods (Shang and Sun 2021). However, it is important 
to note that the merits of ML approaches in managing large- 
scale and high-dimensional data should not be overlooked.

From an operational standpoint, DB methods often ex-
hibit a runtime advantage but require significantly more 
memory than ML methods. This can be attributed to the ne-
cessity for these DB methods to load extensive reference 
databases into memory for quick retrieval. Conversely, 
the significant time investment during the training phase 
for ML methods leads to effective savings in computational 
resources, thereby reducing memory consumption during 
actual operation.

Having assessed the strengths and weaknesses of both 
methods, we devised a new strategy for integrated 
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classification results. The strategy employs a weighted vot-
ing mechanism to finalize the classification of each species, 
thereby effectively exploiting the strengths of each classifi-
cation method. The experimental findings indicate that this 
strategy significantly enhances performance in taxonomic 
classification, leading to more comprehensive and accurate 
species identification.

It is noteworthy that tools such as FlexTaxD and 
MetaMeta also aim to enhance classification accuracy by in-
tegrating various methods, offering potential value in taxo-
nomic classification. FlexTaxD improves sequence read 
classification accuracy and precision by modifying and 
amalgamating both official and custom taxonomic data-
bases (Sundell et al. 2021). This approach is particularly ap-
plicable to studies requiring highly customized databases 
for identifying specific biological communities, thereby ad-
dressing complex diversity issues in taxonomy. It enhances 
the ability to recognize diverse biological information, prov-
ing particularly valuable in areas such as bacterial popula-
tion structure analysis. Meanwhile, MetaMeta provides a 
comprehensive perspective on species classification by inte-
grating the results of different metagenomic analysis tools 
(Piro et al. 2017). This is especially effective in handling 
large-scale metagenomic data, combining the strengths 
of various analytical tools to offer significant insights into 
the discovery of new species and understanding the struc-
ture and function of microbial communities. However, des-
pite their advantages in improving classification accuracy, 
both methods support a limited range of classification tools 
and employ integration techniques different from ours, and 
they are no longer being updated. Therefore, while these 
methods have their merits, our proposed integrated ap-
proach may be superior in terms of simplicity and effective-
ness, although it too has its limitations.

First, the existing merging strategy is somewhat 
limited, focusing mainly on boosting recall, possibly at the 
cost of precision. We plan to explore additional merging 
strategies to enhance the precision of the classification 
results. Second, while ML methods offer certain benefits in 
classifying unknown species, our current integrated 
strategy does not yet incorporate results from ML ap-
proaches. As a result, adding outcomes from ML methods 
to the integration strategy is likely to boost the classification 
performance for unidentified species. Last, the limited num-
ber of species in the data set used for this experiment, along 
with the less-than-optimal GPU performance, may affect the 
experiment’s reliability and general applicability.

Overall, our study suggests that employing a multistrat-
egy parallel approach and integrating results holds signifi-
cant potential in the realm of taxonomic classification in 
high-throughput sequencing data. While each approach 
has its own set of strengths and weaknesses, we find that 
by employing an integrated strategy, we can capitalize on 
the advantages of each to enhance the accuracy of 

taxonomic classification. In future research, we aim to fur-
ther refine the integration strategies and improve current 
classification methods to heighten the accuracy and reliabil-
ity of species identification.

Materials and Methods

Data Set Selection

In this study, we employed the ART Illumina simulator to gen-
erate a comprehensive collection of 240 simulated data sets, 
encompassing a total of 113,282,142 sequences, to assess 
and compare the efficacy of various species classification 
methodologies (Huang et al. 2012). ART Illumina was selected 
for its capability to accurately mimic the sequencing processes 
of Illumina platforms, such as the HiSeq 2500 and HiSeq 2000, 
including their characteristic error patterns. The simulated 
data sets encompassed 30 species validated in the NCBI and 
SILVA databases, representing a broad spectrum of bacteria 
and fungi prevalent within microbial communities (Rinke 
et al. 2021). It is important to note that approximately 10% 
of the data, corresponding to three species, were intentionally 
included from outside the databases to simulate real-world 
scenarios where not all species present in a sample are known 
or cataloged. The selection of these species reflects their wide-
spread distribution across different ecosystems and the sig-
nificant variance in their genomic features and ecological 
traits, laying the groundwork for constructing a challenging 
microbial community model.

A focal point of our simulation process was the applica-
tion of read error models, a crucial element in evaluating 
the accuracy of species classification tools. The error models 
in ART Illumina, derived from real sequencing data, replicate 
the specific error rates and types associated with the HiSeq 
2500 and HiSeq 2000 platforms, such as base substitutions, 
insertions, and deletions. These simulated error types ac-
count for the randomness and complexity of errors encoun-
tered in actual sequencing workflows; for instance, base 
substitution errors may arise from imperfections in the se-
quencing instruments’ optical systems, whereas insertions 
and deletions could result from slippage during the PCR 
amplification process.

Regarding simulated read lengths and coverage, we es-
tablished parameters ranging from 100 to 150 base pairs 
for read lengths and 10 to 30× for coverage, mirroring 
common settings in actual sequencing experiments based 
on the performance characteristics of the HiSeq 2500 and 
HiSeq 2000 platforms. Additionally, to reflect the variability 
in fragment lengths during library preparation, average 
fragment lengths were set between 200 and 400, with 
standard deviations (10, 25, 50) adjusted to simulate this 
variability. Such parameterization not only reflects the con-
ditions of real sequencing experiments but also enhances 
the diversity of the simulated data sets, aiding in a 
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comprehensive assessment of the performance of species 
classification tools under varied conditions.

Through this highly customized simulation process, we 
were able to generate simulated data sets that are both real-
istic and embody diverse challenges, providing a solid founda-
tion for evaluating the accuracy, robustness, and applicability 
of species classification tools in practical scenarios. This ap-
proach ensures that the simulated data sets accurately reflect 
the myriad complexities potentially encountered in real 

sequencing data, thereby enabling a thorough and effective 
evaluation of species classification tools.

Evaluation Methods

In this study, we evaluated the performance of species classi-
fiers using four core metrics: accuracy, precision, recall, and a 
modified FPR (Saito and Rehmsmeier 2015). Accuracy directly 
reflects the proportion of species correctly identified by the 
classifier. Precision focuses on the classifier’s ability to 

Table 1 
Confusion matrix for DNA sequence classification task using simulated data where each sequence has a target species, resulting in zero true negatives (TN)

Predicted as target species (PP) Predicted as nontarget species (PN)

Actual target species (P) TP: DNA sequence correctly classified as its species FN: DNA sequence failed to be classified
Actual nontarget species (N) FP: DNA sequence misclassified as another species TN: DNA sequence correctly classified as nontarget species

The table categorizes DNA sequences as TP, FP, and FN based on their actual and predicted classifications.

Table 2 
Summary of taxonomic classification methods applied in the experiment

Type Classifier Synopsis References

DB Kraken2 Employs a compact hash table for minimizers to LCA mapping and stores only minimizers, reducing 
memory needs

(Lu and Salzberg 
2020)

KrakenUniq Combines k-mer classification with unique k-mer counts using HyperLogLog, supports hierarchical searches 
and strain/plasmid detection, and integrates extensive viral resources

(Breitwieser et al. 
2018)

Centrifuge Based on BWT and FM index for genome sequence storage and search, reduces index through compression 
and redundancy removal, supports variable-length k-mer search

(Kim et al. 2016)

CLARK Multilevel short metagenomic read classification; scalable on multicore, low operational requirements; 
provides confidence scores; supports BAC, transcript, and centromeric region inference

(Ounit et al. 2015)

CLARK-S Allows limited mismatches in k-mers to improve recall, introduces discriminative spaced k-mers for 
precision

(Ounit and Lonardi 
2016)

k-SLAM Conducts full sequence alignment for gene and variant identification, differing from rapid classifiers that 
rely solely on k-mers; incorporates pseudo-assembly to enhance accuracy, notably for species with high 
intra-genus homology

(Ainsworth et al. 
2017)

MegaBLAST Employs genome database-derived indexing for seed finding, utilizes WindowMasker for soft-masking of 
repeats, with performance gradually declining in cases of long or highly matched queries

(Morgulis et al. 2008)

PathSeq Subtracts human sequences, aligns microbial sequences to detect known/unknown pathogens and 
resident microorganisms, supports any data set size in parallel computing and cloud environments

(Walker et al. 2018)

taxMaps Maps short-read data taxonomically, reduces redundancy and improves query performance with database 
compression, uses GEM for nonexact match mapping, achieving similar accuracy to BLASTN with reduced 
time

(Corvelo et al. 2018)

DIAMOND Supports ultrafast large-scale protein searches suitable for extensive data sets; utilizes double indexing and 
multiple spaced seeds for enhanced specificity, optimized by high-performance and cloud computing

(Buchfink et al. 2015)

Kaiju Translates metagenomic reads into reading frames for maximum exact matches in a protein database, 
utilizing BWT for rapid string matching, and employs sparse FM index and adjustable suffix arrays to 
minimize memory usage

(Menzel et al. 2016)

MMseqs2 Parallelized for iterative profile-to-sequence and sequence-to-profile searches, capable of handling large 
data sets, offers clustering to reduce database redundancy, saving storage and computational resources

(Steinegger and  
Söding 2017)

ML BERTax Uses deep neural network and natural language processing to classify DNA sequences’ superkingdom and 
phylum without database relatives; excels with novel organisms and can classify any genome region

(Mock et al. 2022)

IDTAXA Uses ML to reduce overclassification and enhance accuracy, fewer overclassifications with missing data, 
suitable for varied sequence lengths, autocorrects errors in reference taxonomies, part of R’s DECIPHER 
package

(Murali et al. 2018)

QIIME 2 Integrates various feature classifiers and databases for species annotation, supports complex statistical 
analyses for biodiversity exploration, offers data visualization tools for result presentation, and has a 
plugin architecture for easy extension of new features

(Bolyen et al. 2019)
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FIG. 7.—The process of integration using the weighted voting method. The figure shows how the final classification outcome is chosen from among 
various classification methods using weighted voting. Each classification method’s weight (W) is founded on performance indicators like accuracy, recall 
rate, and the like. The classification outcomes with high recall and precision are represented using two pie charts. The final classification outcomes are 
then tabulated below the figure.
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correctly label samples as a specific species, while recall mea-
sures the proportion of all relevant species samples that the 
classifier identifies (Ye et al. 2019). Given our simulated 
data set, where each sequence has a target species, resulting 
in a true negative count of zero, we redefine FPR as the pro-
portion of sequences incorrectly classified to nontarget taxa 
relative to the total number of sequences. This adjustment is 
depicted in the confusion matrix (Table 1), which illustrates 
the distribution of true positives (TP), false positives (FP), and 
false negatives (FN) in our classification results. These metrics 
allow us to comprehensively evaluate the classifier’s perform-
ance, ensuring its reliability and accuracy in species identifica-
tion (McIntyre et al. 2017).

For database-dependent methods, the default operation 
mode seeks hits that meet the software-defined identity 
and alignment criteria. Sequences that do not find matches 
meeting these thresholds are classified as unknown. On the 
other hand, ML methods classify sequences based on 
whether their confidence scores are above a certain confi-
dence threshold, again defined by the software. Although 
some tools allow adjusting this threshold, not every soft-
ware provides such flexibility. To maintain consistency 
and fairness in our evaluation, we used the default settings 
of each classification tool, ensuring a standardized ap-
proach to assessing the performance of various methods.

Applied Taxonomic Classification Methods

For this experiment, we have chosen a range of taxonomic 
classification methods that are commonly used in practical 
applications for our assessment. These approaches can be 
categorized as either DB or ML-based methods, as illu-
strated in Table 2. To maintain the experiment’s fairness 
and accuracy, all classifiers operated in single-thread 
mode using default settings, aimed at realizing the best 
performance for each method, and were run on a single 
server equipped with a Tesla K80 GPU. Moreover, while 
all the database methods utilized NCBI’s public reference 
database, we modified it by removing certain species to al-
low ML methods a chance to showcase their strengths 
(Nasko et al. 2018).

Result Integration

To enhance the reliability and accuracy of species classifica-
tion, we adopted an integration strategy that consolidates 
the results from multiple classification methods. The eight 
selected methods—Kraken2, KrakenUniq, Centrifuge, 
CLARK, CLARK-S, k-SLAM, MegaBLAST, and Kaiju—were 
chosen for their rapid processing capabilities and their pro-
ficiency in generating definitive classification results for in-
dividual sequences. Despite their varied focal points, a 
common feature among these methods is their reliance 
on sequence-level precision over phylogenetic tree struc-
tures or direct abundance outputs.

In the process of integrating these classification out-
comes, we devised a weighted voting system (as illustrated 
in Fig. 7), where each software’s result for every sequence 
(typically in the form of a taxonomic identifier, or taxid) is 
voted on based on assigned weights, with the highest 
weighted outcome being selected. The allocation of 
weights was based on tests conducted on a separate simu-
lated data set, distinct from the one used in the current ex-
periment. Although this weight distribution underwent 
preliminary testing and optimization, we acknowledge 
that it does not represent an optimal solution but rather 
serves as an exploratory attempt. Hence, in our description, 
we specifically emphasize that the weight assignment was 
based on “preliminary settings derived from testing on an 
alternate simulated data set, indicating a provisional and 
exploratory nature.”

Furthermore, we encourage users to customize weights 
according to the specific characteristics of their data and re-
search objectives. This flexibility is crucial for accommodat-
ing diverse research contexts and aims.

Our integration strategy explores two distinct paths: one 
leaning toward high recall, by excluding results that were 
not successfully classified and retaining only those unani-
mously agreed upon by the methods, and another leaning 
toward high precision, which considers all results, including 
unsuccessful classifications. Notably, when the aggregated 
weight of the “unknown” category is high, this approach 
classifies the corresponding sequence as unknown. By em-
bracing the diversity of these strategies and providing re-
searchers with the ability to customize weights, we aim to 
optimize the overall effectiveness of species classification, 
leveraging the strengths of each method to their fullest.
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