publications
publications by categories in reversed chronological order. generated by jekyll-scholar.
2024
- GBEApplication and Comparison of Machine Learning and Database-Based Methods in Taxonomic Classification of High-Throughput Sequencing DataQinzhong Tian, Pinglu Zhang, Yixiao Zhai, and 2 more authorsGenome Biology and Evolution, May 2024
The advent of high-throughput sequencing technologies has not only revolutionized the field of bioinformatics but has also heightened the demand for efficient taxonomic classification. Despite technological advancements, efficiently processing and analyzing the deluge of sequencing data for precise taxonomic classification remains a formidable challenge. Existing classification approaches primarily fall into two categories, database-based methods and machine learning methods, each presenting its own set of challenges and advantages. On this basis, the aim of our study was to conduct a comparative analysis between these two methods while also investigating the merits of integrating multiple database-based methods. Through an in-depth comparative study, we evaluated the performance of both methodological categories in taxonomic classification by utilizing simulated data sets. Our analysis revealed that database-based methods excel in classification accuracy when backed by a rich and comprehensive reference database. Conversely, while machine learning methods show superior performance in scenarios where reference sequences are sparse or lacking, they generally show inferior performance compared with database methods under most conditions. Moreover, our study confirms that integrating multiple database-based methods does, in fact, enhance classification accuracy. These findings shed new light on the taxonomic classification of high-throughput sequencing data and bear substantial implications for the future development of computational biology. For those interested in further exploring our methods, the source code of this study is publicly available on https://github.com/LoadStar822/Genome-Classifier-Performance-Evaluator. Additionally, a dedicated webpage showcasing our collected database, data sets, and various classification software can be found at http://lab.malab.cn/~tqz/project/taxonomic/.
- BioinformaticsFMAlign2: a novel fast multiple nucleotide sequence alignment method for ultralong datasetsPinglu Zhang, Huan Liu, Yanming Wei, and 3 more authorsBioinformatics, Jan 2024
In bioinformatics, multiple sequence alignment (MSA) is a crucial task. However, conventional methods often struggle with aligning ultralong sequences. To address this issue, researchers have designed MSA methods rooted in a vertical division strategy, which segments sequence data for parallel alignment. A prime example of this approach is FMAlign, which utilizes the FM-index to extract common seeds and segment the sequences accordingly.FMAlign2 leverages the suffix array to identify maximal exact matches, redefining the approach of FMAlign from searching for global chains to partial chains. By using a vertical division strategy, large-scale problem is deconstructed into manageable tasks, enabling parallel execution of subMSA. Furthermore, sequence-profile alignment and refinement are incorporated to concatenate subsets, yielding the final result seamlessly. Compared to FMAlign, FMAlign2 markedly augments the segmentation of sequences and significantly reduces the time while maintaining accuracy, especially on ultralong datasets. Importantly, FMAlign2 enhances existing MSA methods by conferring the capability to handle sequences reaching billions in length within an acceptable time frame.Source code and datasets are available at https://github.com/malabz/FMAlign2 and https://zenodo.org/records/10435770.